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Abstract—This study explores the application of multi- resolution 
modeling using wavelet analysis and Adaptive Network based Fuzzy 
Inference System (ANFIS) in conjunction with Kalman filters, called 
WANFIS-KF models, for real- time Electric Power Load Forecasting 
(EPLF) application. The proposed models are used for forecasting 
electric load for 1- day lead time. WANFIS-KF model utilizes 
Discrete Wavelet Transform (DWT) to obtain the sub- time series of 
the original load data at multiple time- frequency resolution, thus 
providing better representation of the variations in the electric load 
data. The Kalman filter algorithm mimic the real- time application 
scenario and hence, updates the model at each time step to provide a 
reliable forecast. The proposed models are compared with stand- 
alone ANFIS models to highlight the effectiveness of the proposed 
WANFIS-KF models in real- time EPLF using Root mean squared 
error (RMSE), Correlation coefficient (CC) and Mean Absolute 
Error (MAE) as statistical indices. The results indicate that WANFIS- 
KF models are better suited for forecasting load data in real- time 
and are able to capture the peak loads with higher accuracy 
compared to standalone ANFIS models.  

1. INTRODUCTION 

The continuous monitoring of the electric load, which is 
supplied by the electric energy system, is a basic requirement 
for its reliable operation [1]. The most important planning 
resources for power system to forecast the future load demand 
in the present scenario and also one of the essential 
requirement for the efficient operation and planning of the 
power system [2]. Load forecasting, with lead times from a 
few minutes to several months, helps the system operator to 
schedule spinning reserve allocation efficiently and is crucial 
for power system security [3].  The EPLF can be classified in 
terms of the forecasting horizon. EPLF for up to 1 day/week 
ahead is termed as short term, whereas forecasting from 1 
day/week to 1 year ahead is classified as medium-term 
forecasting, and ELPF with greater than 1 year lead in 
forecasting horizon is termed as long term forecasting.  

Several approaches are used for the purpose of EPLF like 
regression analysis, autoregressive moving average (ARIMA) 
[4] and autoregressive distributed-lag models. Application of 
Artificial intelligence approaches have been relatively new 

and have been successfully implemented for the purpose of 
short term EPLF. Machine Learning and Soft Computing 
techniques have been proven to represent electric consumption 
uncertainities with very good detail [5]. Al-Hamadi and 
Soliman [6] used a time-varying weather and load model for 
the short-term EPLF. Jain and Satish [7] proposed a hybrid 
technique using Support Vector Machines (SVM) and 
Artificial Neural Networks (ANN) to forecast the electric load 
with 1-day lead time. Several other studies have emphasized 
on the application of ANN for EPLF [3, 8, 9].  

However, these models do not address to the inherent non-
stationarity in the dataset such as trends and seasonal 
variations which leads to poor predictability of electric load in 
real- time applications. Discrete Wavelet Transforms (DWT) 
provides an excellent tool to counter the stationarity issues in 
time series modeling by analyzing the time series data in both 
time and frequency domains, give considerable information 
about the physical structure of a signal [10]. Wavelet 
transform has been largely applied for analyzing variations, 
periodicities and trends in time series [11]. Also, due to 
inherent non- stationarity of the process, it is imperative to 
constantly update the model parameters in order to 
accommodate the short- term fluctuations in the dataset which 
are otherwise unaccounted in stochastic models. Kalman 
filters (KF) are very popularly used for recursive updating of 
the forecasting scheme and hence to obtain reliable forecast in 
the real- time [1, 2, 6, 12].  

This study proposes a hybrid of DWT, ANFIS and KF in order 
to obtain 1- day lead time electrical power load forecasts. The 
proposed methodology is compared with Wavelet-ANFIS 
hybrid models (without recursive updating using KF), and 
stand- alone ANFIS models. The results establish the 
usefulness of the proposed approach over the conventional 
models. The WANFIS- KF models capture the transient shifts 
and peaks in the dataset with greater accuracy and hence are 
more suited for application in electrical load management.     
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2. BRIEF DATA DESCRIPTION 

This study uses hourly load data from 1st Jan 2009 to 31st Dec 
2015 aggregated to daily average values for 1-day lead time 
forecasting obtained from the Electric Reliability Council of 
Texas, U.S.A., (ERCOT) archives. The data is available at 
hourly resolution for eight weather zones. For the purpose of 
this study, the data from eight climate zones is added to obtain 
the combined electric load. Data for the years 2009- 2014 is 
taken as the training dataset for the models and 365 input data 
points from 1st January 2015 to 31st  December 2015 are 
selected for the model validation.  The data can be accessed 
through the following link: 

http://www.ercot.com/gridinfo/load/load_hist/. 

Table 1: Provides the descriptive statistics of the training and the 
validation dataset. 

Descriptive statistics of the load data in MW 

 
Training data 

(1st Jan’ 09- 31st Dec’ 04) 
Validation data 

(1st Jan’ 15- 31st Dec’ 14) 
Mean  844.85 835.20 
Max  1287.59 1154.55 
Min   602.53 632.98 

Std. Dev.  148.21 137.43 

3. MATHEMATICAL TOOLS AND TECHNIQUES 

3.1 Discrete Wavelet Transform  

The Wavelet analysis is similar to Fourier analysis. In Fourier 
analysis, signal is broken into sinusoids of unlimited duration, 
whereas, in wavelet analysis, wavelets are used instead of the 
sinusoids. Wavelets have waveforms of limited duration with 
a mean value of zero. In wavelet analysis, the wavelet is 
shifted forward in steps along full signal. At each step, 
correlation of wavelet to the signal is measured. When the full 
series is covered, a set of wavelet coefficients is generated 
having same consistency in time as that of original signal. The 
process is repeated. Thus, sets of wavelet coefficients at 
different scales are generated and can be used to obtain the 
high frequency (D1, D2..etc) and low frequency (A1, A2.. etc) 
sub- time series of the original data corresponding to different 
time- frequency resolutions. The main advantage of using the 
wavelet method is its robustness since it does not include any 
potentially erroneous assumptions or parametric testing 
procedures. Another advantage of the wavelet method is that 
wavelet variance decomposition allows one to study different 
investing behavior in different time scales independently.  

For a discrete time series,  ݔ, with integer time steps, DWT in 
the dyadic decomposition scheme is defined as 

ܶ,	 ൌ 	 2ି/ଶ ∑ ݔ
ேିଵ
ୀ ߮ሺ2ି݅ െ ݊ሻ  (1) 

where ܶ,	  is the discreet wavelet coefficient for scale a=2m 
and location b =2m n, m and n being positive integers; N is the 
data length of the time series which is an integer  power of 2, 

i.e., N=2M. This gives the ranges of m and n as 0 < n < 2M-m -1 
and 1 < m < M, respectively. This implies that only one 
wavelet is needed to cover the time interval producing only 
one coefficient at the largest scale (i.e., 2m where m=M). At 
the next scale (2m-1), two wavelets would cover the time 
interval producing two coefficients, and so on till m=1. Thus, 
the total number of coefficients generated by DWT for a 
discreet time series of length N = 2M is 1+2+3+…+2m-1 = N-1 
[13]. 

The original time series may, then, be reconstructed 
employing inverse discrete transform, i.e; 

		ݔ ൌ 	ܶ	ഥ  ∑ ∑ ܶ,2ି/ଶଶಾషିଵ
ୀ

ெ
ୀଵ ߮ሺ2ି݅ െ ݊ሻ (2) 

or, in a simple format as: 

		ݔ ൌ 	ܶ	ഥ ሺݐሻ  ∑ ܹ	
ெ
ୀଵ ሺݐሻ                 (3) 

where ܶ	ഥሺݐሻ is called approximation sub-time series (denoted 

by Am in this study) at level m and ܹ	ሺݐሻ are details sub-

time series (denoted by Dm in this study)  at levels ݉ ൌ
 .ܯ…,1,2

For a detailed illustration on wavelet analysis, the readers are 
referred to Mallat [14]. 

3.2 Adaptive network based fuzzy inference system 

ANFIS is a data-driven modeling technique which combines 
human knowledge and reasoning ability of fuzzy inference 
system (FIS) with the adapting capability of ANN. Systems 
which use the theory of employing fuzzy sets to classes of 
unclear, imprecise and incomplete information using linguistic 
labels stipulated by membership functions are referred to as 
FIS. Linguistic terms and structure of if-then rules make fuzzy 
an easily understandable technique, but lacks the ability to 
deal with changing external environments. 

The degree of agreement of a fuzzy set is represented by a 
membership function, varying from 0 to 1. The final 
membership functions obtained after each rule’s output differ 
in value yet, are similar in shape to initial membership 
functions. The artificial intelligence is achieved by specifying 
category of input variables, such as ‘low’, ‘medium’ and 
‘high’. Optimal number of categories is chosen through 
comparison, whichever provides the best result.  Jang, Sun and 
Mizutani [15] provide a good illustration of the working of 
ANFIS. In this work, a five-layer ANFIS structure is 
implemented where the first layer executes a fuzzification 
process, the second layer executes the fuzzy AND of the 
antecedent part of the fuzzy rules, the third layer normalizes 
the membership functions, the fourth layer executes the 
consequent part of the fuzzy rules and the last layer computes 
the output of the system by summing up the outputs of the 
fourth layer (Fig. 1). 
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Fig. 1: five-layer ANFIS structure 

3.3 Kalman Filter 

In this section, the equation for the development of the basic 
recursive discrete Kalman filter have been addressed. Given 
the discrete state equations: 

ሺ݇ݔ  1ሻ ൌ ሺ݇ሻݔሺ݇ሻܣ	   ሺ݇ሻ                                      (4)ݓ

ሺ݇ሻݖ ൌ ሺ݇ሻݔሺ݇ሻܥ	   ሺ݇ሻ                                              (5)ݒ

where x(k) is n x 1 system states, A(k) is n x n time-varying 
state transition matrix, z(k) is m x 1 measurement vector, C(k) 
is m x n time-varying output matrix, w(k) is n x 1 system error 
and v(k) is m x 1 measurement error. 

The noise vectors w(k) and v(k) are uncorrected white noises 
that have: 

Zero means: 

ሺ݇ሻሿݓሾܧ ൌ ሺ݇ሻሿݒሾܧ	 ൌ 0                                 (6) 

No time correlation: 

ሺ݆ሻሿ்ݓሺ݅ሻݓሾܧ ൌ ሺ݆ሻሿ்ݒሺ݅ሻݒሾܧ ൌ 0                      (7) 

For i = j 

Known covariance matrices (noise levels): 

ሺ݇ሻሿ்ݓሺ݇ሻݓሾܧ ൌ ܳଵ	                                                     (8) 

ሺ݇ሻሿ்ݒሺ݇ሻݒሾܧ ൌ ܳଶ                                                       (9) 
where ܳଵ and ܳଶ are positive semi-definite and positive 
definite matrices, respectively. The basic discrete-time 
Kalman filter algorithm is given by the following set of 
recursive equations. Given as priori estimates of the state 
vector x^(0)=x₀^ and its error covariance matrix, P(0)=P₀, set 
k=0 then recursively computer: 

Kalman gain : 

ሺ݇ሻܭ ൌ ሾܣሺ݇ሻܲሺ݇ሻ்ܥሺ݇ሻሿ/ሾܥሺ݇ሻܲሺ݇ሻ்ܥሺ݇ሻ  ܳଶሿ   (10) 

New State Estimate : 

ሺ݇^ݔ  1ሻ ൌ ሺ݇ሻ^ݔሺ݇ሻܣ	  ሺ݇ሻݖሺ݇ሻሾܭ െ  ሺ݇ሻሿ (11)^ݔሺ݇ሻܥ

Error covariance update: 

ܲሺ݇  1ሻ ൌ
ሺ݇ሻܣ െ ሺ݇ሻܣሺ݇ሻሾሺ݇ሻሿܥሺ݇ሻܭ െ ሺ݇ሻሿ்ܥሺ݇ሻܭ																								 
 ሺ݇ሻ                 (12)்ܭሺ݇ሻܳଶܭ

An intelligent choice of the priori estimate of the state x₀^ and 
its covariance error P₀ enhances the convergence 
characteristics of the Kalman filter. Few samples of the output 
waveform z(k) can be used to get a weighted least-squares as 
an initial values for x₀^ and P₀: 

^₀ݔ ൌ ଶ்ܳܪ
ିଵܪሿିଵ்ܳܪଶ

ିଵ(13)                           ₀ݖ 
ܲ₀ ൌ ሾ்ܳܪଶ

ିଵܪሿିଵ                                       (14) 

Where z₀ is  ݉݉ଵ  x 1 vector of  ݉ଵ measured samples and H 
is  ݉݉ଵ x n matrix. 

˳ݖ ൌ ൦

ሺ1ሻݖ
ሺ2ሻݖ
.

	

ሺ݉₁ሻݖ 	

൪     (15)    And,    ܪ ൌ ൦

ሺ1ሻܥ
ሺ2ሻܥ
.

	

ሺ݉₁ሻܥ 	

൪    (16) 

4. MODEL DEVELOPMENT 

Wavelet coupled bootstrap- Artificial Neural Network 
(WBNN) models are developed in this study to evaluate its 
effectiveness in EPLF. DWT is applied on the input time 
series (training and validation) of the load data to obtain the 
wavelet sub- time series of the input dataset. Selection of 
suitable level of decomposition of the input data is crucial in a 
wavelet based model.  

4.1 Selection of decomposition level of decomposition for 
obtaining the wavelet sub- time series 

Selection of the suitable level of decomposition to obtain the 
wavelet sub- time series of the input data for the models is 
crucial for explaining the overall variability in the data. Each 
wavelet sub-time series captures different realizations of the 
load data in time- frequency domain.  

 
Fig. 2: Wavelet Power Spectrum (WPS) of the observed total 

dataset (Training+ Validation period). Significant occurrences 
can be observed at 128- 512 period interval corresponding to the 

seasonal and annual variations in the dataset. 
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Fig. 2 provides the wavelet power spectrum (WPS) [16] of the 
total model data (training+ validation). The WPS indicates 
significant occurrences in the 128 to 256 and 256- 512 day 
period owning to annual and seasonal variation in the dataset. 
Hence, the dataset is decomposed to 9th dyadic scale 
,corresponding to 256- 512 day period, to obtain the high and 
low frequency wavelet sub- time series corresponding the to 
the 9th level of wavelet decomposition (A9, D9, D8, D7..D1) 
for training and validation period. Fig. 3 shows the wavelet 
decomposition of the total input dataset to nine level of 
decomposition.  

4.2 Selection of suitable wavelet for decomposition of the 
data 

Selection of a suitable mother wavelet has significant impact 
on the performance of a wavelet based model. Effective 
representation of the variation in the dataset with in a given 
constraint of the level of decomposition is affected by the 
mother wavelet selected for applying the DTW. A Daubechies 
class wavelet with vanishing moment of 45 (db45) is selected 
for this study to carry out the wavelet decomposition of the 
input dataset for the models. The selection of wavelet in this 
study is in line with Sehgal et. al. in [17] which highlights that 
the wavelets with a high vanishing moment are more suited 
for effective representation of a signal in the form of wavelet 
sub- time series for a wavelet based time series model.  

4.3 WANFIS-KF, WANFIS and ANFIS models 

Once the input dataset is decomposed into its wavelet sub- 
time series, the decomposed data is arranged in lagged form 
till seven antecedent lads in order to relate current load 
information with the load data for past seven days. The 
selection of suitable number of lags is carried out by observing 
the Sample Partial Autocorrelation plots of the observed total 
dataset as provided in Fig. 4. Seven lags are found to be 
sufficient to explain the variation in the data. This corresponds 
to the weekly cycles in electricity usage. Separate ANFIS 
models are developed for each wavelet sub- time series to 
obtain the wavelet sub- components of the predicted electric 
load at 1- day lead. These predicted components are later 
added to obtain the predicted load at original time- frequency 
resolution. These models are called WANFIS models in this 
study. Kalman filters are used to update the model parameters 
with each forecasting step and hence provide an updated 
forecast compared to the WANFIS model output. As these 
models are hybrid of DWT, ANFIS and KF, they are called 
WANFIS- KF models.  For the purpose of comparison with 
these two models, stand- alone ANFIS models are also 
developed with original dataset (DWT is not applied).  A 
schematic for the proposed modeling scheme is provided in 
Fig. 5. 
 

 

 

Fig. 3: Wavelet decomposition of the total input dataset to nine level of decomposition.  
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Fig. 4: Sample Partial autocorrelation of the observed total 
dataset. Seven antecedent lags are found to be significant  

for the model development.  

5. MODEL PERFORMANCE INDICES 

For the performance evaluation of the WANFIS-KF, WANFIS 
and ANFIS models in forecasting 1- day lead load data for the 
validation period, three statistical indices namely Root Mean 
Square Error (RMSE), Correlation Coefficient (CC) and Mean 
Absolute Error (MAE) which are defined as follows:  

(i) Root Mean Square Error (NRMSE) is expressed as: 

ܧܵܯܴ ൌ ටଵ


∑ ሺ ܱ െ ܲሻଶ
ୀଵ                                    (17)                                                                                                                   

where Oi and Pi are the observed and estimated load and n is the 
number of data points in the validation dataset.  

 
Fig. 5 

(ii) Correlation coefficient (CC) is defined as: 
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              (18)  
where,  ܲଓഥ  is the mean of the estimated load time series for the 
validation dataset. 
  
(iii) Mean absolute error (MAE) is expressed as 

ܧܣܯ ൌ 1/݊ሺ∑ |ܱ݅ െ ܲ݅|
ୀଵ ሻ	    (19) 

6. RESULTS AND DISCUSSION 

Comparison between the performances of the three models for 
the validation period is summarized in Table 2. It can be 
observed that the wavelet based models namely WANFIS- KF 
and WANFIS perform better than stand-alone ANFIS models 
in terms of all three statistical indices. However, the 
WANFIS-KF models are better in capturing the transient 
fluctuations in the electric load and hence outperform 
WANFIS models in all three performance indices. The 
WANFIS- KF model gives an RMSE of 13.48 MW compared 
to 37.08 MW and 51.32 MW obtained from WANFIS and 
ANFIS models. The CC and MAE for the WANFIS- KF 
models is observed to be 0.99 and 10.26 KW respectively. CC 
and MAE observed from the WANFIS and ANFIS models 
respectively are 0.97 and 31 MW; and 0.93 and 37.42 MW. 
Fig. 6 provides a comparison between the observed and model 
outputs from WANFIS- KF, WANFIS and ANFIS models 
using line and scatter plots.  

The wavelet based models provide information to the 
modeling system about the variations in the electric load data 
at multiple time- frequency resolutions. Hence model for each 
sub- time series is able to adapt to the required complexity and 
the combined approach of wavelet analysis with ANFIS 
(WANFIS) provides better accuracy compared to stand- alone 
ANFIS models. However, the load forecasting system should 
be able to adapt to the fluctuations in the power demand very 
quickly to accommodate unexpected transient fluctuations in 
electrical load demand. The proposed WANFIS- KF approach 
is able to rapidly adapt to the changing electrical demand 
scenarios and hence is able to provide reliable forecast for 
electrical load. 

Table 1: Performance comparison of WANFIS-KF, WANFIS and 
ANFIS models for the validation period (1st January 2015 to 31st 

December 2015)  

Performance of models for validation period 
 WANFIS-KF WANFIS ANFIS

RMSE (MW) 13.48 37.08 51.32 
CC 0.99 0.97 0.93 

MAE (MW) 10.26 31.00 37.42 
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7. CONCLUSION 

This paper provides application of a real- time electrical power 
load forecasting methodology using Wavelet analysis, ANFIS 
and Kalman filters hybrid approach, called WANFIS- KF. The 
proposed approach is compared with wavelet- ANFIS hybrid 
models (without real- time updating using Kamlan filters) and 
stand- alone ANFIS models. The models are applied for 1- day 

lead electrical load forecasting for calendar days of the year 
2015. The results from the three models are compared using 
three statistical indices RMSE, CC and MAE. From the 
results, it is evident that the WANFIS- KF models are better 
suited for real- time applications as the models capture the 
transient changes in the load accurately thus providing a reliable 
forecast compared to the other two models explored in this study.    

 

 

Fig. 6: Line and Scatter plots for (a) WANFIS- KF (b) WANFIS (c) ANFIS models 
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